

G-CAM

THE COMPREHENSIVE SOLUTION FOR RESTORATIVE DENTISTRY

WHAT IS GRAPHENE?

- Allotropic presentation form of carbon atom.
- Two-dimensional sheet with hexagonal shapes.
- Covalent bonds by Van der Waals forces.

GRAPHENE PROPERTIES

GRAPHENE HAS CHEMICAL, MECHANICAL, PHYSICAL AND BIOLOGICAL PROPERTIES

🔄 Extremely resistant

Superconductor at room temperature

(i) It reacts chemically with other substances

- 🐘 High density
 - Transparent and lighter
 - Bacteriostatic
- ∧ Flexible

3 EVOLUTIONARY STEPS OF GRAPHENE

HOW WAS GRAPHENANO FORMED

- Market-seeking in nanotechnology
- Lateral thinking
- Intuition and determination
- Own capital
- "We believe in ourselves"
- Conversion to R&D&A

WHY CHOOSE GRAPHENANO DENTAL

- Doctoral thesis on the reinforcement of polymer matrices.
- Cover needs of the dental market.
- Obtaining new material with new properties.
- Versatile, comfortable, precise and durable material.

HOW IS CURRENT DAY IMPLANTOLOGY?

WHAT ARE IMPLANTS USED FOR?

Implants substitute dental roots as a prosthetic support.

Esmalte

Dentina

Pulpa

Cemento

Membrana periodontal

Nervio y suministro sanguíneo

DIFFERENCE BETWEEN AN IMPLANT AND A NATURAL TOOTH

• The root of the natural tooth is covered by the periodontal ligament, which grants the tooth with flexibility and load absorption. The implant is completely anchylosed to the bone.

• The root apex of the natural tooth is connected to the nerve and endows the tooth with proprioception. The implant is not connected to any nerves, so the patient does not feel the load or direction of it.

DISTRIBUTION OF IMPLANTS PER ARCADE

- To rehabilitate a 12-14 pieces arcade, 6-8 implants are placed.
- Therefore, each implant bears the load of 2 natural teeth with hard materials without flexion.

PHOTOESLASTIC STUDY OF LOADS

(prof. Simionato)

WEIGHT OF THE NATURAL TOOTH VS CURRENT PROSTHESIS

- A natural tooth with its root weighs on average 1 g.
- A prosthesis on implant with its metal-ceramic or Zrceramic attachments weighs an average of 6 g.
- Therefore, 12 natural teeth weigh 12 g while a regular rehabilitation weighs over 70 g.

CONCLUSION

- The occlusal load which is received by an implant has a direct effect on the bone cortices and is maximized by the absence of proprioception.
- Each implant bears the load of 2 natural pieces.
- The weight received by the system is 6 times higher than the natural dentition.

ADDED PROBLEMS

- Time for manufacturing metal-ceramic or Zrceramic prostheses.
- Repair of usual structures.
- Degradation of materials.
- Bimetallism.
- Adhesion of bacterial plaque.
- Removal of prosthesis from the patient.

EVERYTHING HAS A SOLUTION!

- Creation of biodynamic prostheses that are flexible and absorb the masticatory load.
- Prostheses with a hardness slightly below the hardness of the natural tooth.
- Aesthetic, resistant and durable prostheses.
- Prostheses that balance the weight of the natural dentition.
- Easy repair prostheses.

WHAT MATERIALS CAN BE USED?

• No doubt acrylic materials, for their easy repair and chromatic range.

- The most used material in the history of dentistry is PMMA based.
- Hybrid, crowns, complete, provisional...

Grupo Graphenano · www.graphenano.com

DISADVANTAGES OF PMMA

• Acrylic resins are hard, fragile and crystalline polymers. They are used as thermostable materials as, after curing, they cannot be transformed or molded.

• In addition, they have a high coefficient of absorption of liquids, so they become quickly saturated, change color and break.

WHAT DO WE PROPOSE?

Our solution is a graphene nanoreinforced biopolymer.

G-CAM

Grupo Graphenano · www.graphenano.com

TESTS G-CAM

RESULTS OF MECHANICAL TESTS

• The incorporation of graphene products (nanofibers, nanosheets...) to acrylic resins is a novel strategy to improve their mechanical properties by simultaneously increasing both the elastic modulus and tenacity, reducing the appearance of cracks and/or their propagation, as well as to decrease the degree of contraction during the polymerization.

• Graphene nanofibers are good candidates to improve the performance of self-cured acrylic resins for dental use, not only because of their high tensile strength, low coefficient of thermal expansion, high adsorption and lubrication capacity, flexibility and high specific surface area, but also for its great resistance-weight ratio.

COMPARATIVE GRAPHICS WITH DIFFERENT DOPINGS

This graph shows how we improved the material flexion by 20%. In comparison with the materials of the market, we suppose a 35% improvement in flexion.

Grupo Graphenano · www.graphenano.com

COMPRESSION TESTS

As can be seen, the graph shows that, within the range of work in the mouth (80 kg/cm²), the deformation is 10%. This indicates that the product absorbs the masticatory load thanks to this deformation, recovering the initial shape without any problem.

TRANSLUCENCY AND COLORIMETRY

AS A THEORETICAL BASE

	Opacity (dentins)	Translucency (enamels)
REFLECTANCE	Greater than 25 %	Less than 19 %
TRANSMITTANCE	Less than 1.2 %	Greater than 3.5 %

G-CAM is available in 9 colours, in monochromatic and multichroma version:

BL2, A1, A2, A3, A3.5, B2 y C2 (VITA), transpa and pink.

G-CAM MONOCHROMA 20 % opacity

58 % translucency

G-CAM MULTICHROMA

15 % opacity 76 % translucency

Grupo Graphenano · www.graphenano.com

CEMENTATION

- Brush the inside of the crowns.
- Clean with ethyl alcohol.
- Use dual cement type Panavia and RelyX Unicem.

RADIOPACITY OF THE MATERIAL

THERMAL CONDUCTION OF THE MATERIAL

BONDED POLYMER ADHESION

- GNFs type stacked up: it is the lastest type of GNFs found to date.
- They have a unique morphology in which the graphene planes are inclined from the fiber axis, leaving the edges of said planes exposed both on the outside and inside the fiber.
- This makes them easily functionalized by chemical or thermal treatments to **facilitate their** attachment to different matrices.
- This type of fibers is hollow, and recently Kim et al. (52) showed that they have a circular cross section and are different from the *fishbone* GNFs, although when they are both viewed with the transmission electron microscope (TEM) have the same plan projection.

(52) Kim YA, Hayashi T., Naokawa S., Yanagisawa T., Endo M. Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon 2005; 43: 3005-3008.

PROPAGATION OF CRACKS

• Self-polymerizing resins based on polymethyl methacrylate (PMMA) are the most commonly used in dental laboratory. However, they have low impact resistance and low transverse and flexural strength, this is derived from the formation and propagation of cracks when subjected to mechanical stresses.

• We have shown that **fiber reinforced polymers have a higher modulus and specific resistance** than conventional polymeric materials thanks to the distribution of tension between the fibers, which support these stresses without suffering practically any deformation. The union between the nanoreinforcement and the polymeric matrix is one of the critical aspects that explain the increase of mechanical properties in this type of composite materials.

Grupo Graphenano · www.graphenano.com

Grupo Graphenano · www.graphenano.com

Grupo Graphenano · www.graphenano.com

TOXICITY

Instituto Valenciano de Microbiología

Masia El Romeral Ctra. Bétera - San Antonio de Benagéber, Km 0,3 46117 Bétera (Valencia) Tel. 96 169 17 02 Fax 96 169 16 37 e-mail: ivami@ivami.com www.ivami.com CIF B-96337217

648/LE 1286 Evaluación biológica de dispositivos médicos Prueba de citotoxicidad *in vitro* con el producto DISCO ACRÍLICO.

(Norma ISO 10993-5: 2009)

Informe Nº de registro

1. Identificación del laboratorio	Instituto Valenciano de Microbiología.
2. Identificación del cliente	Graphenano S.L.
Dirección del cliente	Calle 2ª, 1 Polígono Táctica 46980 Paterna

TX/17/16.

3. Identificación de la muestra

•	Nombre del producto	DISCO ACRÍLICO.
•	Lote del producto	No indicado.

- Caducidad ... No indicado.
- Fabricante / Proveedor Graphenano S.L.
- Fecha de recepción del producto 14/08/2017.
- Fecha de solicitud en condiciones de la prueba
- 14/08/2017. Apariencia del producto Disco acrílico.
- Conservación Temperatura ambiente
- Sólido.
- Tipo de muestra.... Compuestos activos No indicado.
- Condiciones de uso ... No indicado.
- Concentración/es solicitada/s No indicado.

4. Método de ensayo y su validación

Esta prueba ha sido realizada según las directrices de la norma UNE-EN-ISO 10993-5: 2009, realizando la lectura de los efectos mediante la prueba de captación de rojo neutro (NRU: Neutral red uptake), aplicable a la evaluación de la citotoxicidad de sustancias quimicas, productos sanitarios (dispositivos médicos) o extractos obtenidos de ellos. (Procedimiento interno TOXICOL/EVADISP-0100) y TOXICOL/EVADISP-0050).

· Procedimiento por exposición a extracto del dispositivo.

TOXICOL/EVADISP-0100-b Versión 4 (15-12-16) Página 1 de 3 Nº de registro: TX/17/16 Instituto Valenciano de Microbiología

5.

Condiciones experimentales.	
 Periodo del análisis Dispositivo estéril/ esterilizado en el 	21/08/2017 al 25/08/2017.
laboratorio, sometido a extracción	Estéril.
 Línea celular utilizada. 	Vero.
 Medio de cultivo utilizado (lote) 	Medio MEM 2% (V17-371)
 Suero utilizado en el medio de cultivo 	
(lote)	Suero bovino fetal (RB35937).
Antibiótico/s utilizado/s en el medio	
de cultivo (lote)	Antibiotic/Antimycotic (16S215309)
 Tipo de recipiente para el ensayo 	Placas 96 pocillos.
 Número de réplicas realizadas con el 	-
producto	3 (triplicado).
 Controles negativos utilizados 	Cultivos celulares en las mismas condiciones
 Número de réplicas de los controles 	
negativos	4 (cuadruplicado).
 Control positivo utilizado 	Sodium Lauryl Sulfate (0.1 mg/mL).
 Número de réplicas de los controles 	(-,
positivos	3 (triplicado)
 Tiempo de incubación previa de las 	- (
monocapas celulares	24 horas.

 Periodos de observación tras la exposición a las células. 48 horas Medio de extracción... Medio de cultivo celular. Método de extracción... Producto de ensayo en agitación en medio de cultivo celular a + 37°C ± 1°C durante 24 horas ± 2 horas.

- · Proporción producto/volumen de
- medio de extracción ... 3 cm²/mL

6. Seguimiento cualitativo de los cultivos celulares durante el periodo de ensayo

- Observación microscópica.
- 7. Métodos cuantitativos para la evaluación de la citotoxicidad
- Viabilidad celular respecto al control (%). La viabilidad celular se expresa como un porcentaje respecto al control negativo. Densidad óptica (OD) del control negativo en la prueba de captación del rojo neutro (NRU) = 100% viabilidad celular. Densidad óptica (OD) de las concentraciones ensayadas en la prueba de captación del rojo neutro (NRU) = % viabilidad celular del producto de ensayo.
- Reducción de la viabilidad celular (%) =100 menos % viabilidad celular del producto.

Para que un producto sea considerado citotóxico tiene que provocar un porcentaje de reducción de la viabilidad celular superior al 30%.

TOXICOL/EVADISP-0100-b Versión 4 (15-12-16) Página 2 de 3 Instituto Valenciano de Microbiología Nº de registro: TX/17/16

TOXICITY RESULT

8. Observaciones especiales relevantes durante la prueba

El ensayo se realiza con el extracto puro por tratarse de un sólido de gran dimensión.

9. Evaluación cualitativa

Tabla 1 - Gradación morfológica de la citotoxicidad

Grado	Reactividad	Características de los cultivos	
1. (c)		Gránulos intracitoplásmicos discretos, sin lisis	
0	Ninguna	celular, sin reducción del crecimiento celular.	

0=Ninguna; 1=Ligera; 2= Leve; 3=Moderada, 4=Intensa

10. Evaluación cuantitativa

Muestra	Media de las absorbancias
	(OD) ensayo con el
	extraído.
Extraído del producto TX/17/16	0,600
Sodium Lauryl Sulfate	0,129
Control negativo	0,812

11. Interpretación de los resultados:

Se observan efectos cualitativos de daño celular durante las observaciones microscópicas de los cultivos a las 48 horas.

El porcentaje de viabilidad celular observado mediante la lectura de los efectos evaluada con la prueba de captación de rojo neutro (NRU: Neutral red uptake) es de un 73,85%. El porcentaje de reducción de la viabilidad celular observado mediante la lectura de los efectos evaluada con la prueba de captación de rojo neutro (NRU: Neutral red uptake) es de un 26,15%.

12. Conclusiones:

El producto DISCO ACRÍLICO, no posee efecto citotóxico cuando se ensaya según las condiciones citadas.

Bétera (Valencia) a 25 de agosto de 2017.

Fdo. Alma Ballester	Fdo. Noelia Ros	Fdo. Encarnación Esteban
Responsable de área	Técnico responsable	Director Técnico
(Director de estudio)	(Investigador)	(Director Garante de Calidad)

Referencia

- UNE-EN ISO 10993-5: 2009. Evaluación biológica de productos sanitarios. Parte 5: Ensayos de citotoxicidad in vitro. AENOR.
- UNE-EN ISO 10993-12:2012. Evaluación biológica de productos sanitarios. Parte 12: Preparación de muestras y materiales de referencia.

TOXICOL/EVADISP-0100-b	Versión 4 (15-12-16)	Página 3 de 3
Nº de registro: TX/17/16	Instituto	Valenciano de Microbiología

STUDY OF GENOTOXICITY

Instituto Valenciano de Microbiología

Masía El Romeral Ctra. Bétera - San Antonio de Benagéber, Km 0,3 46117 Bétera (Valencia)

Tel. 96 169 17 02 Fax 96 169 16 37

e-mail: ivami@ivami.com

www.ivami.com CIF B-96337217

Prueba de reversión de mutaciones bacterianas (Bacterial Reverse Mutation Test) -Normas ISO 10993-3: 2014 (Biological Evaluation of Medical Devices, Part 3: Test for Genotoxicity, Carcinogenicity and Reproductive Toxicity) y OECD 471: 1997 (Bacterial **Reverse Mutation Test**)

Informe Nº de registro TX/17/17.

1. Laboratorio de ensayo: Instituto Valenciano de Microbiología, S.L.

Cliente	Graphenano S.L.
Dirección	C/ 2ª, 1 Polígono Táctica
	46980 Paterna.

3. Identificación de la muestra

Tipo de producto	Disco Acrilico.

- Nombre del producto...... Disco Acrilico.
- No indicado. Número de lote.....
- · Fabricante / Remitente de la
- muestra..... Graphenano, S.L.
- Fecha de recepción del producto.. 14/08/2017.
- · Fecha de recepción de petición con 18/08/2017
- condiciones de prueba..... Condiciones de conservación..... No indicado.
- Tipo de muestra (líquida, sólida)... Sólida.
- Aspecto del producto..... Disco acrílico transparente.
- · Fecha de caducidad (si
- corresponde)..... No indicado.

4. Método de ensayo y su validación

Esta prueba se realiza según las directrices de la norma UNE-EN-ISO 10993-3: 2014 y OECD 471: 1997 (Procedimiento interno TOXICOL/EVADISP-0930).

Procedimiento por exposición a extracto del dispositivo. Norma UNE-EN ISO 10993-12:2012. Evaluación biológica de productos sanitarios: Preparación de muestras y materiales de referencia. (Procedimiento interno TOXICOL/EVADISP-0050).

TOXICOL-0930-b Versión 1 (09-01-17) Página 1 de 7 Nº de muestra: TX/17/17 Instituto Valenciano de Microbiología

5. Condiciones experimentales

- De 04/09/2017 a 22/09/17 Periodo del análisis..... · Dispositivo estéril / esterilizado en el laboratorio..... Estéri1
- Microorganismos utilizados:... Salmonella enterica subsp. enterica CECT-880.
 - Salmonella enterica subsp. enterica CECT-881. Salmonella enterica subsp. enterica CECT-882.
- Tipo de recipiente para el ensayo...
- · Controles positivos utilizados.
- 2-Nitrofluorene Cumene hydrogen peroxide. Mitomicina C.
 - 2-Aminoantraceno. 1

CECT-883.

Azida de sodio.

Salmonella enterica subsp. enterica

Escherichia coli CECT-7326

Placas de Petri de 90 mm.

- Dimetilsulfóxido (DMSO). Controles negativos utilizados... 1
 - 2. Agua destilada estéril. 3 (triplicado).

48 horas.

Solución de cloruro sódico 9g/L.

- 3. Solución de cloruro sódico 9g/L.
- Número de réplicas realizadas con el producto ... Número de réplicas de los controles
- positivos... 3 (triplicado).
- Número de réplicas de los controles
- negativos..... 3 (triplicado) Tiempo de incubación previa de los 24 horas.
- microorganismos.....
- Periodos de observación tras la exposición.....
- Medio de extracción
- Producto de ensayo en agitación en solución Método de extracción... salina a + 37°C ± 1°C durante 72 horas.
- Proporción producto/volumen de medio de extracción ... 0.2 g/mL

6. Seguimiento cualitativo de los cultivos bacterianos durante el periodo de ensayo

Observación microscópica.

TOXICOL-0930-b Versión 1 (09-01-17) Página 2 de 7 Nº de muestra: TX/17/17 Instituto Valenciano de Microbiología

GENETICS

7. Métodos cuantitativos para la evaluación de la genotoxicidad

Revertantes inducidos • Tasa de mutagenicidad (RM) =

Revertantes espotáneos

- Para que una muestra se considere mutagénica, la tasa de mutagenicidad debe ser ≥ 3.
- 8. Observaciones especiales relevantes durante la prueba
 - · Para realizar el ensayo no ha sido necesario fraccionar el producto recibido.
- 9. Tabla de resultados. Método de incorporación en placa. Bestade, Coloren II. anterior other autorios CECT 890

Ensayos	R1	R2	R3	Media
Producto con activador	19	23	19	20
Producto sin activador	12	17	13	14
Solución de cloruro sódico 9 g/L con activador	17	27	23	22
Solución de cloruro sódico 9 g/L sin activador	10	13	18	14
Control positivo (2-aminoantraceno) con activador	68	69	71	69
Solvente de control positivo (DMSO) con activador	25	18	26	23
Control positivo (2-nitrofluorene) sin activador	51	49	48	49
Solvente de control positivo (agua destilada estéril) sin activador	13	17	19	16

Bacteria: Salmonella enterica subsp. enterica CECT-881

Ensayos	R1	R2	R3	Media
Producto con activador	98	88	92	93
Producto sin activador	83	76	86	82
Solución de cloruro sódico 9 g/L con activador	92	110	103	102
Solución de cloruro sódico 9 g/L sin activador	73	101	88	87
Control positivo (2-aminoantraceno) con activador	286	297	294	292
Solvente de control positivo (DMSO) con activador	92	86	94	91
Control positivo (azida de sodio) sin activador	227	238	266	244
Solvente de control positivo (agua destilada estéril) sin activador	70	81	87	79
OVICOL 0020 h Versión 1 (00 01 1	7)	Diain	2 4. 7	

TOXICOL-0930-b Nº de muestra: TX/17/17 Versión 1 (09-01-17) Página 3 de 7 Instituto Valenciano de Microbiología

Bacteria: Salmonella enterica subsp. enterica CECT-882

Ensayos	R1	R2	R3	Media
Producto con activador	19	18	15	17
Producto sin activador	6	6	7	6
Solución de cloruro sódico 9 g/L con activador	19	17	19	18
Solución de cloruro sódico 9 g/L sin activador	6	7	6	6
Control positivo (2-aminoantraceno) con activador	44	58	52	51
Solvente de control positivo (DMSO) con activador	21	15	13	16
Control positivo (azida de sodio) sin activador	45	48	32	42
Solvente de control positivo (agua destilada estéril) sin activador	4	5	4	4

Bacteria: Salmonella enterica subsp. enterica CECT-883

Ensayos	R1	R2	R3	Media	
Producto con activador	21	22	27	23	
Producto sin activador	15	16	17	16	
Solución de cloruro sódico 9 g/L con activador	23	22	27	24	
Solución de cloruro sódico 9 g/L sin activador	16	19	17	17	
Control positivo (2-aminoantraceno) con activador	123	118	127	123	
Solvente de control positivo (DMSO) con activador	28	37	32	32	
Control positivo (cumene hydrogen peroxide) sin activador	50	47	58	52	
Solvente de control positivo (agua destilada estéril) sin activador	13	19	17	16	

Bacteria: Escherichia coli CECT-7326

Ensayos	R1	R2	R3	Media
Producto con activador	10	8	12	10
Producto sin activador	6	8	12	9
Solución de cloruro sódico 9 g/L con activador	12	11	9	11
Solución de cloruro sódico 9 g/L sin activador	7	13	15	12
Control positivo (2-aminoantraceno) con activador	23	25	18	22
Solvente de control positivo (DMSO) con activador	5	7	6	6
Control positivo (mitomicina C) sin activador	30	38	36	35
Solvente de control positivo (agua destilada estéril) sin activador	9	11	13	11

TOXICOL-0930-b Versión 1 (09-01-17) Página 4 de 7 Nº de muestra: TX/17/17 Instituto Valenciano de Microbiología

GENETICS

10. Tabla de resultados. Método de preincubación.

Bacteria: Salmonella enterica subsp. enterica CECT-880

Ensayos	R1	R2	R3	Media
Producto con activador	18	21	23	21
Producto sin activador	13	18	15	15
Solución de cloruro sódico 9 g/L con activador	16	25	24	22
Solución de cloruro sódico 9 g/L sin activador	12	11	10	11
Control positivo (2-aminoantraceno) con activador	72	69	73	71
Solvente de control positivo (DMSO) con activador	23	20	26	23
Control positivo (2-nitrofluorene) sin activador	53	51	56	53
Solvente de control positivo (agua destilada estéril) sin activador	15	16	18	16

Bacteria: Salmonella enterica subsp. enterica CECT-881

Ensayos	R1	R2	R3	Media
Producto con activador	93	84	95	91
Producto sin activador	85	79	73	79
Solución de cloruro sódico 9 g/L con activador	90	99	95	95
Solución de cloruro sódico 9 g/L sin activador	84	93	88	88
Control positivo (2-aminoantraceno) con activador	276	284	291	284
Solvente de control positivo (DMSO) con activador	85	91	89	88
Control positivo (azida de sodio) sin activador	235	228	254	239
Solvente de control positivo (agua destilada estéril) sin activador	68	72	84	72

Bacteria: Salmonella enterica subsp. enterica CECT-882

Ensayos	R1	R2	R3	Media	
Producto con activador	17	19	15	17	
Producto sin activador	12	13	15	13	
Solución de cloruro sódico 9 g/L con activador	19	15	17	17	
Solución de cloruro sódico 9 g/L sin activador	16	10	12	13	
Control positivo (2-aminoantraceno) con activador	43	53	55	50	
Solvente de control positivo (DMSO) con activador	20	17	12	16	
Control positivo (azida de sodio) sin activador	43	51	40	45	
Solvente de control positivo (agua destilada estéril) sin activador	14	15	13	14	

TOXICOL-0930-b	Versión 1 (09-01-17)	Página 5 de 7
Nº de muestra: TX/17/17		Instituto Valenciano de Microbiología

Bacteria: Salmonella enterica subsp. enterica CECT-883

Ensayos	R1	R2	R3	Media
Producto con activador	20	21	25	22
Producto sin activador	18	17	19	18
Solución de cloruro sódico 9 g/L con activador	21	25	27	24
Solución de cloruro sódico 9 g/L sin activador	15	18	19	17
Control positivo (2-aminoantraceno) con activador	121	117	126	121
Solvente de control positivo (DMSO) con activador	31	33	28	31
Control positivo (cumene hydrogen peroxide) sin activador	52	59	53	51
Solvente de control positivo (agua destilada estéril) sin activador	18	12	16	15

Bacteria: Escherichia coli CECT-7326

Ensayos	R1	R2	R3	Media	
Producto con activador	12	18	13	14	
Producto sin activador	12	15	16	14	
Solución de cloruro sódico 9 g/L con activador	13	14	13	13	
Solución de cloruro sódico 9 g/L sin activador	12	15	16	14	
Control positivo (2-aminoantraceno) con activador	35	27	31	31	
Solvente de control positivo (DMSO) con activador	9	8	10	9	
Control positivo (mitomicina C) sin activador	38	35	39	37	
Solvente de control positivo (agua destilada estéril) sin activador	13	12	10	12	

11. Evaluación cuantitativa

Tasa de mutagenicidad (RM) = _____

RE (Revertantes espotáneos)

Tasa de mutagenicidad (RM)	S. enterica CECT-880	S. enterica CECT-881	S. enterica CECT-882	S. enterica CECT-883	E. coli CECT-7326
Con activador incorporado en placa	0,91	0,91	0,95	0,97	0,94
Sin activador incorporado en placa	1,02	0,94	1,00	0,92	0,74
Con activador y preincubación	0,95	0,96	1,00	0,90	1,08
Sin activador y preincubación	1,39	0,89	1,05	1,04	1,00

RI: resultados del producto con y sin activador; RE: resultados del solvente del producto con y sin activador.

TOXICOL-0930-b Versión 1 (09-01-17) Página 6 de 7 Nº de muestra: TX/17/17 Instituto Valenciano de Microbiología

GENOTOXICITY CONCLUSION

12. Interpretación de los resultados:

No se observa mayor crecimiento en los cultivos de la muestra a las 48 horas, en comparación con los controles. El número de colonias viables no varía respecto a los controles de cepas. No se observa un aumento del crecimiento durante el tiempo de incubación en presencia del dispositivo. La tasa de mutagenicidad (RM) del producto recibido es inferior a 3.

13 Conclusiones

La exposición de las cepas bacterianas al producto sanitario Disco Acrilico, lote no indicado, no posee efecto genotóxico cuando se ensaya según las condiciones citadas.

Bétera (Valencia), a 26 de Septiembre de 2017.

Fdo, Alma Ballester Responsable de área Técnico responsable (Director de estudio)

Fdo. Encarnación Esteban Director Técnico (Director Garante de Calidad)

Referencias:

- UNE-EN ISO 10993-3: 2014. Biological evaluation of medical devices Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity.
- OECD 471: 1997. Guideline for testing of chemicals. Bacterial Reverse Mutation Test.

Fdo. Noelia Ros

(Investigador)

• UNE-EN ISO 10993-12:2012. Evaluación biológica de productos sanitarios. Parte 12: Preparación de muestras y materiales de referencia.

TOXICOL-0930-b Versión 1 (09-01-17) Página 7 de 7 Nº de muestra: TX/17/17 Instituto Valenciano de Microbiología

APPLICATIONS IN DEVELOPMENT

BIBLIOGRAPHY

Occlusal loads and distribution of implants. Slide 11

1. Schenk R, Buster D. Osseointegration: a reality. Periodontology 2000, 1998;17:22-35.

2. Oñate E. Cálculo de Estructuras por el Método de los Elementos Finitos. Centro Internacional de Métodos Numéricos en Ingeniería, 1992, Ed. CIMNE, Barcelona, España.

3. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prost. Dent. 2004;91:44-50.

4. Weinberg L. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993; 8: 19-31.

5. Burdairon G. Manual de Biomateriales Dentarios. Libros. Barcelona: Masson, 1991.

Weight prosthesis. Slide 13

6. Hobo S, Ichida E, García LT. Osteointegración y rehabilitación oclusal. Libros. Madrid: Quintessence books, 1997.

7. Taylor TD, Agar JR, Vogiatzi T. Implant prosthodontics: Current perspective and future directions. Int J Oral Maxillofac Implants; 2000: 15: 66-75.

8. Skalak R. Biomechanical considerations in osseointegrated prostheses. J ProsthetDent 1983; 49: 843-8.

9. Sones AD. Complications with osseointegrated implants. J Prosthet Dent 1989; 62: 581-5.

10. Millington ND, Leung T. Stress on an implant superestructure in relation to its accuracy of fit. J Dent Res 1992; 71: 529 (Abstr No 108).

Graphenano Group:

